If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2r^2+34r-120=0
a = 2; b = 34; c = -120;
Δ = b2-4ac
Δ = 342-4·2·(-120)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-46}{2*2}=\frac{-80}{4} =-20 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+46}{2*2}=\frac{12}{4} =3 $
| 9n−22=41 | | 32=52−w | | 28=16+6h | | (X+5)^2=(x-5)^2+10 | | 7x-4x-7=38 | | |3 | | |3 | | |3 | | |3 | | 0.07x=0.07x | | 53x+53=1431 | | x=90-1/2x | | 425-(3x+3(x+5))=20 | | Yx.20=70 | | 8z-z=27 | | 56=28/m | | 8x-x=25 | | 7x+63=231 | | x²-30x-900=0 | | 3x-24=108 | | 9X(6+j)=81 | | m•5=125 | | r+4=39 | | 9x–11=5x+7 | | c-7=32 | | 3(2p–5)=21 | | 4x-3x^2+124=0 | | 5/5x-4/5x=90 | | 9x+20=-9x-20 | | 5z+-1=34 | | 21-14x+9=4x | | 9^3x=37 |